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A PROVOCATIVE APPROACH TO Al

Prompt to ChatGPT4.0: Estimate the dimensions, power absorption and rpm of an axial fan that operates in an air-cooled
condenser with 333 m?/s of volumetric flow rate and 115 Pa of static pressure rise.

Power input to the air (air power):

Py = Q@ x AP =333m®/s x 115Pa = 38,295 W ~ 38.3kW

Assuming fan total efficiency (including motor & drive losses) = 70%:

P 383
= 2 ~ 54.TkW
n  0.70

F, shaft —

Use the specific speed (dimensionless) and fan laws to estimate diam

Let's assume a moderate-speed axial fan operating at ~400 RPM.

From fan similarity laws:

QxD? N=Dx Q 1f3
N

1/3
D =~ (%) ~ 1.88m

= A fan diameter of ~1.8-2.2 meters is a reasonable starting point.

~~ 4. Tip Speed Consideration:

Keep tip speed below 120 m/s to limit noise and avoid efficiency loss.

Ugp =7+ D - N/60

|:> Using D = 2.0 m, solve for max RPM:

N:60-Uﬁp :60-120
D T2

~ 1,146 RPM
So, a speed of <1000 RPM is safe, and 400-800 RPM is typical for large axial fans.

RABBIT HOLE

Entrance

And down the rabbit hole,
with «stage» design, velocity

triangles and on... j
Nest chamber Chamber 2



A PROVOCATIVE APPROACH TO Al
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Prompt to ChatGPT4.0: Estimate the dimensions, power absorption and rpm of an axial fan that operates in an air-cooled
condenser with 333 m?/s of volumetric flow rate and 115 Pa of static pressure rise.

Summary of Key Parameters: Blade layout (7?) Velocity triangle (?)
Inlet velocity triangles
Parameter Value Wi
U=63m/s
Airflow Rate (Q) 333 m’/s W/\
Static Pressure Rise 115 Pa V=40m/s
Power (input to air) ~38.3 kW Outlet velocity triangle
Vi
Shaft Power Required ~54.7 kW (at 70% eff.) U=63m/s
/ WZ
Fan Diameter Estimate 1.8-22m
Bz = 450
RPM Range 400 - 800 RPM
Blade Type Aerofoil, adjustable pitch ©® Al % F Y experts
Hub-to-Tip Ratio 03-05 400-800 rpm 151 rpm
Y = 0.0486 Y = 0.093




A WELL-FOUNDED CONCERN
s Al the future of turbomachinery and fans?
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OUTLINE

Part 1: Introduction to Machine Learning and Its Role in Fan Research (15 min)

Part 2: Case Studies and Lesson Learnt on ML and Fans (30 min)

&

Part 3: Conclusion & Q&A (10 min)
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) Part 1: Introduction to Machine Learning and Its Role in Fan Research (15 min)
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Part 1: Introduction to Machine Learning and Its Role in Fan Research

Basics of Machine Learning
 Supervised, Unsupervised, and Reinforcement Learning

« Data sources: loT sensors, performance testing, simulations

Context

« The growing role of AI/ML in engineering, manufacturing, and aerodynamics

ML Applications in Fan Technology



- DEFINITIONS OF MACHINE LEARNING
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General Definition - Arthur Samuel's Definition (1959):
"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.”

Technical Definition:
Machine learning is the study of algorithms that improve automatically through experience and data, often using statistical and
probabilistic methods to identify patterns and make informed decisions.

Tom Mitchell's Definition (1997):
"A computer program is said to learn from experience E with respect to some task T and some performance measure R if its
performance on T, as measured by B improves with experience E".

Practical Definition (Industry-focused):
Machine learning is the process of training computers to recognize patterns and make decisions based on data, used in a wide range of
applications.



DEFINITIONS OF MACHINE LEARNING
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Practical Definition (Engineering-focused)
A complex way to derive very complex and powerful models.
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Artificial Intelligence

Involves all those operations characteristic of human intellect and performed by computers. These
include planning, language comprehension, object and sound recognition, learning and problem solving.
Not all Al are based on statistical learning as they can be condition-based programs (e.g. Chatbot)

A BIT OF TAXONOMY

A computer program is said to
learn from experience E with
respect to some task T and some
performance measure P, if its
performance on 1, as measured by
P, improves with experience E.

Machine Learning

Represents a way to “automate” the construction of an analytical model to give computer systems the
ability to "learn" from data, without being explicitly programmed. Training phase involves the use of large
amounts of data and an efficient algorithm in order to adapt (and improve) according to the situations that

occur.

Deep Learning

Uses huge models of neural networks with various processing
units; exploits computational advances and training techniques
to learn complex models through an enormous amount of data.
Common applications include image and speech recognition.

—Tom Mitchell, 1997

How does machine learning relate to artificial intelligence?

Pattern

on
mputing
’4 Machine learning is a category of

> ? - - --» research and algorithms focused on
finding patterns in data and using those
patterns to make predictions. Machine
learning falls within the artificial
intelligence (Al) umbrella, which in turn
intersects with the broader field of
knowledge discovery and data mining.

Knowledge discovery

Source: SAS, 2014 and PwC, 2016

10



SOURCES OF DATA
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ML MODEL
Data Model . - |
collection > building >> Learning >> Training >>Eva|uat|on>

\ Sources of data for ML applications can be

Open Research Data — papers diverse.
= Private Data — company and sensitive data Common examples include experimental data,
;g Mt Sensor Data, Logs & Events numerical simulations, loT, sensor networks,
£ and more.
S Data from manufacturers B
= Although the ML and TM communities are
2 Open Source Datasets . o .
S growing, significant efforts must still be made to
S | Surveys & Feedback create open datasets and share both data and
% Web Scraping & APls knowledge.

Crowdsourced Data The confidentiality of data may, however,

partially hinder its development.
11



APPROACHES TO LEARNING
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BUILDING A MODEL

Data Model
> Collection bU|Id|ng m Training >> Evaluatlon>

Supervised Learning

» Learns from labeled data (input-output pairs).

 Used for classification (e.g., fault diagnosis) & regression (e.g., performance prediction)
Unsupervised Learning

 Learns from unlabeled data, discovering hidden patterns.

 Used for clustering (e.g., pattern recognition) & dimensionality reduction (e.g., PCA).
Reinforcement Learning (RL)

 Learns by interacting with an environment and receiving rewards/penalties.

 Used where self-learning is needed (e.g. controllers).

N

Growing

Level of development in TM

12



(«w A TURBOMACHINERY-CENTRIC VIEW OF ML
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Practical Definition (Engineering-focused)
A complex way to derive very complex and powerful models.

In engineering applications, ML can be used to solve a wide range of tasks, from computer vision to anomaly detection.

Similarly, ML models can be used in turbomachinery applications as a more powerful alternative to statistical/traditional
methods.

However, transferring the already established knowledge of ML to turbomachinery (and fans) is still an open debate.

Mumerical temperature fieldT/K Predicted temperature ield T'K Error distribution AT/K

EEEEEEEEEEEE I!-::- I:..],_1 i'l:.‘rr
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s ERREEEERRREEEERR lgm , WL ST, | WP -

ololo
]
E]
HEGREGEGEOENGEEGRAEES " e iy |
clclelelelelelelelelcle el el e e[l 2] 2]@ ' I ° L | e
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9| ‘A fast prediction model of blade flutter in turbomachinery based on
"The MNIST Database of handwritten digits’, LeCun et al. graph convolutional neural network’, Liu et. Al - adapted 13
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Machine Learning (ML) and Artificial Intelligence (Al) are widely used across

various industrial applications, from design to customer care.

However, rather than viewing Al/ML as a highly adaptable and intelligent system, it
IS more accurate to see it as a collection of specialized models, each excelling at a
specific task.

These models have limited ability to extrapolate or generalize and, in most cases,

cannot learn from new experiences unless explicitly programmed to do so.

This approach is known as Narrow Al, emphasizing its restricted scope of operation.

Narrow Al can be considered the current level of technological development in

turbomachinery

Machine learning-assisted fan design: trends, challenges and applications

THE ROLE OF AI/ML IN INDUSTRY 4.0

Maintenance
9%

K

Customer
care
13%

Generative design
10%

Monitoring .~
14%

“Integrating artificial intelligence in industry 4.0: insights,
challenges, and future prospects—a literature review’, Gabsi
A

14
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In industry 5.0 a shift from Narrow Alto a General Al

or Industrial Al must occur,

This is a long process, as it would require to shift
the paradigm of current models from basic learners

to advanced (and expensive) smart systems.

This novel and complex digital system will be

founded on three pillars:
1. Collaborative intelligence
2. Self-learning intelligence

3. Crowd intelligence

THE UPCOMING ROLE OF AI/ML IN INDUSTRY 5.0

Qndustrial Applications)

: Empowering
Bl Supply Chain Risk . User Requirement technologies
Processes & —> ~UPPY — q »—{ Procurement Plan > Financing Risk Control g

Management Analysis
Systems 9 2l
Production <] Al CPUs and GPUs
Plant-wide Equipment ; - . .
Processes & —> Optimization Maintenancall Sorting Objects »— Quality Inspection
Systems
Product Lifecycle __ Product Product Intelligent, Product Unmanned Operated Human-cyber-physical
Management Development Service Traceability Equipment <] systems

( Al Algorithms )

K-nearest Neighbor Support Vector K-means Dimensionality
Classification Machines Clustering Neardl Network Reduction Wi s lMetavete
+ e Linear Logistic CJ
Naive Bayes +—— Random Forests ¥ Decision Tree »—— Regression —t Regression

Secure multi-party
( Computing Engine ) computation

Big Data Platform »— Al Engine & Running Environment

n = A <:] Collaborative robotics
CNTK & reconfigurable
Mahout  b——  CGaffe  \—— 0 nitive Toolkit) * D4 ensortiow Executors

G—Iardware Infrastructure)

<:] Blockchained shared

Network Infrastructure »—— Internet of Things »— Interaction Interface »—— Server computing

9

— Supplements for each other @ (:] Supporting relationship —_— Including relationship
<

Reference frame of IndAl applications — Leng et al.

15



AI/ML AND TURBOMACHINERY

]énEUEE — Aerodynamic Design Data Knowledge learner| " Priliminary design |

Analysis models

Geometry Performance -+} Initial velocity triangles |

,LRL

= — "
(7> Optimal velocity tnanglesﬁl

Loss models,
Surge margin model,

. . Meridional flow pathy  Efficienc
Narrow Al can be considered the current level of technological Vo vars | Sugemare
Stack_ing curve Loading.c.i.isuibulion

Loading distribution [T
model,

3D analysis model,

development in turbomachinery

' Blade profile design [

Design Target

| Initial blade profie |
Total temperature, Total pressure, Design models
z v RL
Pressure ratio, Mass flow rate, a
Rotational speed Velocity triangle model, L Optimal blade profile |

 During the turbomachinery design phase, ML can assist, ¥ e ——Jostmal cading mos.

. f ti t + Blade profile model, i .
enhance, or even fully replace existing models. ML can poinsliaey Potomant | [ sesiacumormas, | ||| s0Bsedsion ]

H—  Initial 3D blade

optimize blade shape or predict TM performance using a e R | Jp——
. Past Retained L' Optimal 3D blade
computation-free approach (as shown later).  ae % —
Knowledge base

uoneziwndo g ubisep siweulpoiay

 Inthe validation stage, ML can be applied to advanced o N __ -
turbulence modeling, surrogate modeling, or flow field owerse| (oot | e i‘
analysis and investigation using experimental data. “‘“°""'°“9°'°*""°j Pe—
o : . > High-fidelity data | Al-based models L | &
ML can also be utilized for operations and maintenance x| || T . el =
(0&M) monitoring and decision-making. i, =}
« Each of these tasks requires different methods, and within (o T [ e
this framework, they are largely independent of one S ot | ™
another. s | ] s | S—
Nondesiructive inspection data, RS prahcten | Maintenance g

Update

The role of ML within TM applications — Zou et al. 10




- ML & FAN
@
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The great increase of data-driven methods applied in turbomachinery especially for aerospace applications, is gradually
leading to novel developments also for industrial fans.

Notable applications:

"‘3

Exploration of performance charts: unsupervised methods and dimensionality reduction

Design and optimization: supervised methods for blade shape and geometrical parameter optimization (e.g. volute
shape)

Prognosis & fault diagnostic: : supervised methods to assess reliability, damage and RULE of fans

o Control and efficiency improvement: supervised and reinforced learning for energy consumption reduction, on large
systems

g% 23
=09 0%

)
(%

-

17



@ BIG DATA & FAN: EXPLORATION OF CATALOGUE DATA
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Overview of The Best 2020 AxialFlow Fan Data and Inclusion in Similarity Charts for the Search of the Best Design
Masi M., et al. Journal of Turbomachinery 144.9 (2022): 091012.

Scopes: Exploration of catalogue data

Methodology: a statistical survey of 500 axial-flow fan performance based on data from catalogues of major manufacturers and compares the resulting Cordier lines with optimum fan
designs from empirical or computational fluid-dynamics (CFD)-based models available in the literature

2
Model: statistical survey
. . . .y . A
Result: determination of the optimal characteristics of the fan designs, as well as novel and old trends
1
< MW o- 40
M a0 - so
a 82
W 72 - 74
M 74 - 76
W 76 - 78
4000 M 78 - s0
1 - > 80
3500 i s —_ 2
_________ | — FH
'E" qﬁgii ha g P R*=0.2898 ! :2: 5’3
i ]Q: % - 5 s VA At/ | H il e
E B e = b I . . *  aer@stBEP : = ;:: ;g
§ o 2 R O e | 1 EocDetat iy —
" gt : RN x:
10007 RRR AR T T " ST S KL [ '
o Bopogois 35 5 2 i e s
ot : ] ﬁ“ . . ) R?=04218 _
%.0 0s IO 15 20 25 " 0 20 40 60 80 i : i : TA
rotor diameter [m] volume flow rate qv [m~3/s] L E ; —;:S:B_QE: ;?g:‘:;
Marginal plot of the rotation Marginal plot of the rotation 2
speed against fan diameter speed against fan diameter Aeraulic efficiency Balje charts of year 20 ducted fan

types (top), CR fans (top-middle), VA fans (middle-bottom), and

Machine learning-assisted fan design: trends, challenges and applications TA fans (bottom) 18



ML & FAN: BLADE SHAPE OPTIMIZATION
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Machine-learning and CFD based optimization and comprehensive experimental study on diagonal flow fan for energy conservation and efficiency enhancement
Zhou, Shuiging, et al., Engineering Applications of Computational Fluid Mechanics 18.1 (2024): 2310608, 2024.

Scopes: Multi-objective optimization (pressure, sound emissions and efficiency) of the outlet guide vane of a mixed flow fan
Methodology: rotor-stator axial spacing, OGV camber line radius, length and location are varied and simulated through CFD. LS-SVM is trained and used as evaluation function in

GA-PSO coupling.
Model: Least Squares — Support Vector Machine + Genetic Algorithms with Particle Swarm Optimization T e R
Result: 106 Pa increase in total pressure, a 3.6 dB reduction in noise levels, and 16.3% enhancement in total pressure 6ffiCiency - s camm s g a2 2

Set the constraints for the input parameters 7 -
Rotational direction ————

5<L<20; 80<R<100; 50<C<70; Establish improved GA-PSO

5<x=<25: SO<y<80 approach
Obtain the parameters by Optimal Latin Set optimization conditions
hypercube sampling and goals I ,-f2 T
| Rectify Blade
Results obtained by CFD Obtain the noninferior =, stiohd

solution set

Choose the optimal solution

samples

}

Creating the LS-SVM model

[ Select the training samples and test

MBS N N N N b N RS

4& The optimal solutionmeet the : ’
engineering requirements<5% Shock Wake
Set training parameters and test parameters interaction interaction
Test samples to verify theaccuracy of the T
model v \ Outler guide vane
Comparative analysis of T ]__ = . &
No Meet the aceuracy X numerical simulation and CTF oy () (b)
requirements proofing tests Noise behaviour
Comparison between baseline and optimized geometries

Framework Optimization parameters

19



ML & FAN: FAN CONTROL
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Off-design performance analysis of a radial fan using experimental, computational, and artificial intelligence approaches
Moradihaji et al., European Journal of Mechanics-B/Fluids 104 (2024): 150-172.

Scopes: Predict the off-design performance of a radial fan using machine learning

Methodology: 70 numerical simulations of off-design operations, the artificial neural network is used as a surrogate performance map of the fan
Model: Deep Artificial Neural Networks, Support Vector Machine, Random Forest

Result: results are comparable to CFD simulations, however the model shows limited extrapolation capability

Fitted Line (Test Data): Fitted Line (Test Data):
oo T 101x -29.68 100001~ | gix+-I215
u Fitted Ling (Train Data): % Fitted Ling (Lrain Data):
H 1.00x + 650 i 1.06x 1 -4.00
] ——yx 5 8000{ === y=x
g oot T T na g + TesiaDam
£ e ‘lest Daw £ ®  TestDat
E. Error Band i s000 Error Band
E} MAPE (Train Data): 0.45% ;‘- MAPE(TmmDomrosess | 2 (NN @240 T e
£ 2
I MAPE ( Test Data): 1.09% F o MAPE ( lest Data): 1.41%
T 4000 Z
g R-squared (Train Data): 1.00 z Resquared (Train Data}: 100
S Resquared (Test Data); 1.00 2000 Resquared (Test Data): 1.00 Total pressure difference
2000 4000 5000 8000 10000 2000 4000 6000 8000 10000 Mass fllow rate 2 X r:
Actual Tolal pressure difference Actual Static pressur differince Static pressure difference
Fitted Line (Liest Data): Fitted Linc {est Data):
2] = Toixion o] T lomiand :
Fifted 1 ine (Train Data): Fitted Line (Train Data): Rotational speed Shaft power
T 00x £ 000 T 100k +-0.08 = "
10] ===y s{ ===y o 7
? *  Train Dats E‘ *  Train Data A
E | e mestbaa 2] © Teapm Efficiency
8 2 -
2 Error Band g Error Band
1 I
:g & MAPE (Train Data): 0.94% Zas MAPE(TminDwaxo25% |  [NAARE @000 =S 0200000090900 s NS NS e
E MAPE (Test Data): 1.72% E MAPE (Test Data): 1.13%
O -
Re-squared ( Irain Data): 1.00 Re-squared ( Irain Data): 1.00
| Resquared (Test Data): 1.00 35 Resaquared (Test Data: 0.99
2 6 L] 12 35 40 a5 50 55 60
Actual Shaft power Actual Efficiency

Machine learning-assisted fan design: trends, challenges and applications 20



ML & FAN-COMPRESSOR: BLADE EROSION
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Predicting the Operability of Damaged Compressors Using Machine Learning
Taylor J. V., European Journal of Mechanics-B/Fluids 104 (2024): 150-172.

Scopes: Predict the off-design performance of a radial fan using machine learning

Methodology: novel MRP method, composed by machine learning, rapid test to provide the training experimental data, and physical parameters drawn from engineering
Model: Neural networks

Result: the method can predict the operability with an accuracy of 2% in a 95% confidence interval

+ Datum

2x50% CaseF |
10x 10% Case G

+ » + Experiment

Machine
learning

Physical
parameters

~ Operability prediction

Total-Static Pressure Coefficient / Design
m

Prediction of the blade damage through MRP method 0.7 08 Flow &Sesrﬁciem / Dgé?gn 09

Model performance with different levels of damage

21



ML & FAN: FAULT DIAGNOSIS
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Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods
Ciaburro, Giuseppe, et al. Informatics. Vol. 10. No. 1. MDPI, 2023.

Scopes: Detection of possible failure condition of an axial fan

Methodology: the recording of the acoustic emission and the failure diagnosis using deep learning was evaluated for the detection of dust deposits on the blades of an axial fan
Model: Convolutional Neural Network for a binary classification problem

Result: 95 % of accuracy in detecting blade fouling

Convolutional + ReLU

Max pooling Fully

connected
Feat x
Sound Signals o ur.es Data

Labelling Augmentation

E:
(Spectogram)

INPUT

Ludezde o = 2
CNN-based
Fan Fault
Diagnosis Test set Spectrogram
System
ouTPUT ‘

OUTPUT

NoFault
Fault

—

Pre trained Transfer CNN L
CNN T learming |  Training Training set  f¢— | Ser—| e
Fault diagnosis CNN-based framework From spectrogram to blade state prediction
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ML & FAN: FAN CONTROL

Optimized and Energy Efficient Server Fan Control Using Deep Reinforcement Learning Method.
Fulpagare, Yogesh, et al., Journal of Building Engineering (2025): 112306.

Scopes: Development of a controller to achieve energy consumption of server fans

Methodology: controllers are implemented in an experimental apparatus, the controller takes decisions in real-time and is optimized during the tests.
Model: Deep Deterministic Policy Gradient algorithm (DDPG)

Result: the fan power consumption and overheating are reduced to 53 % and 9 %, respectively

A |
1l | |
i b |
i T : I Configl
: | Calculate the total Pr drop in each channel ] I Lalculate the temp change : 12 =
T of each heat source 1077
! | i ! 111ttt ‘I‘I‘If‘l‘tt iii‘l‘ttf -
I : No Weather to | k-] B LA 851
i calculate to the end ! E TH
i ! of the time? | g
l : e : H E
___________ _ 5 5 | 1
: : , “
| Calculate the flow velacity dfstrlbutlun in each channel l | £ o4 &1 - BS - ai i
| Calculate the temp difference of heat sink in each channel | : H H H E a3 14 oKy 03 35
I 22
| Calculate the avg inlet temp of heat sink in each channel | |
|
]
B I Case | Cage 2 Case 3 Case 4 Case 5 Case b
ISl b P W : ISR R RS ER SRR R IR ERE RN B et
converges? | Configl Config2 Config3
Transientloop |
____________________________________ |
Framework Fans and system configurations Fan power for different scenarios - adapted

Machine learning-assisted fan design: trends, challenges and applications 23
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Part 2: Case Studies and Lesson Learnt on ML and Fans (30 min)
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Part 2: Case Studies and Lesson Learnt on ML and Fans

Surrogate-based optimization of truly reversible blade profiles for axial fans

a - Machine-learning clustering methods applied to detection of noise sources
WSS in Jow-speed axial fan

A multidimensional extension of Balje chart for axial flow turbomachinery
using artificial intelligence-based meta-models

@ Lesson learnt & practical tips
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Part 2: Case Studies and Lesson Learnt on ML and Fans

Surrogate-based optimization of truly reversible blade profiles for axial fans




\ PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
), ))
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This work presents a study on the SM based methodology to obtain a set of optimized aerofoils shapes for the use in reversible fan blading. It addresses the following
question: how meta-model techniques affect results of multi objectives optimization and how these meta-models should be exploited in an optimization test-bed.

Objective functions
. _Gs
1) Aerodynamic efficiency &= C C - —
D
(max(C, ) )
AoA(max(C,))— AoA(C,,) =
2) Stall margin a = - = S~—
AoA(max(C,)) 4
Geometry parameterization —

The selected scheme is a 6th degree B-spline parameterization

0.05 ‘ ‘
0.04}, (0, Yy) o (Xa2,Ye2)
0.03

Truly reversible airfoil

(X3, Ye3) Angelini, G., Bonanni, T., Corsini,

0.02 A., Delibra, G., Tieghi, L., &
0.01 Volponi, D. (2018). On surrogate-
0.004 (0,0) (1,0) based optimization of truly
‘ ‘ ‘ ‘ ‘ ‘ reversible blade profiles for axial
0.0 0.2 0.4 0.6 0.8 1.0 fans. Designs, 2(2), 19.

il



PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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Optimization algorithm

Non-dominated sorting genetic algorithm (NSGA-II), Deb 2012. NSGA-II combines non-dominated sorting
with a diversity-preserving mechanism based on crowding distance

Test matrix

A matrix of 25 optimization cases representing common operations for tunnel and metro fans was defined by
means combinations of 5 values Re and 5 values C;g

Re 300000 675000 1050000 1425000 1800000
Crg 0.1 0.3 0.5 0.7 0.9
Data Sampling
The design space includes 8 parameters F=(X,Y,Y XYY, ReC.,)

28



PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

farc0c°5
Optimizer: NSGA-II
Design space Initial Population:
40 reversible aerofoils
Target l
operations > Test Functions
Optimizer | 7| | Extended Population
s
\9)
v 5
Optimized Sl | Non dominated sorting +
Aerofoils - Crowding distance= Pareto
Front
— Next generation
- 29
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Design space

Target
operations

Optimizer

A4

Optimized
Aerofoils

PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

10 generations

Optimizer: NSGA-II

Initial Population:
40 reversible aerofoils

l

Test Functions

r 2
SM : LSM, ANN

_K Single level framework )

r N
SM : LSM, ANN

y

Extended Population

Non dominated sorting +
Crowding distance= Pareto
Front

l

Next generation

—k Bi- level framework

» XFoil was used as test function in the
standard optimization

 To reduce the computational effort,
LSM and ANN meta-models were
developed

30



@\ PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
)
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4 Least square method (LSM) )
The fitness function was approximated using a second-order polynomial response
surface.
O=¢,+¢F+¢,F,+.. .+ F +
XFOIl (MOEA) gl,val2 + §2,21722 +...t gs,s}:‘s2 +
( )
SM : LSM, ANN 4/1,2F1F2 Tt gs—l,st—le +4q
Single level framework
> < The polynomial quantify the relation between the objectives vector (0) and the
SM : LSM, ANN factors (F).
Bi- level framework
& J
A least square method fit approach enables the estimation of the polynomial
regressors (C).
\_ _J/
( N
Artificial Neural Network (ANN)
\_ J
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@ PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

fanC0°5
LSM
(" o )
Artificial Neural Network (ANN)
Multi-layer perceptron
B logsig linear
XFO[[ (MOEA) | X, ., function ) funetion
- ~ One hidden layer, 1, @ @
SM : LSM, ANN 25 neurons v, (O @ -
Single level framework Xl @
¥s .
(" ) Yt . ‘. ’
S:VI :ILfSM, ANN ) 2 N 'e)
Bi- , , :
g I- level Tramewor y i . -.
Input Hydden layer Output
layer (25 neurons) layer
ANN was trained using a Bayesian optimization algorithm, randomly initializing weights
and biases between 1 and -1

- J
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@\? PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

2025
4 )
Single level framework
It's also called No evolution control (NEC) approach
: . DOE
XFoil (MOEA) The SMs are used in the MOOP framework ;
- ~ vylthout any gssessment against the original SM training
SM : LSM, ANN fitness function :
Single level f k
g Ingle level Tramewor ) NSGA-II
SM : LSM, ANN In t.he S|mple—|evel approach the optimization is
: Entirely driven by the SMs
Bi- level framework
& J
\_ _/
4 . )
Bi-level framework
\_ J
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( DOE \
Single level framework
SM training
v
NSGA-II
\_ /
XFoil (MOEA) f \
e - Bi-level framework
SM : LSM, ANN _
Single level framework || The Bi-level framework advocates the use of —t  DOE
> < fitness function during EA process . ¢. _
SM : LSM, ANN g SM trflmng
Bi- level framework Two stage approach: 2 NSGA|
~ “| « anumber of solutions are produced and 2 -
evaluated using the SM. 5 .
XFoil test
 The best solutions are then evaluated with
the original fitness function to enrich the
sampling data set from which the SMs are derived
- j
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The standard MOEA results are illustrated. The selected objective function was based on XFoil.
The dotted line is the initial frontier. The optimization technique should move this imaginary frontier toward higher efficiencies and stall margins.

The results for all Re and C, s combinations of the text matrix after 10 generations are shown.
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MOOP was solved using NSGA-II algorithm assisted by developed meta-models using the single level approach

ANN - Single level LSM — Single level
70 : , : 70 —
® =ANN < >
= Xfoil teste
60 | 0 = Xfoil tested | 60 -
‘Se % \
50 | e _ 50 < \..
i : x5 °0
Rd — O
W 40 : o OO‘: w 40 r Oqg
fo¥e} Coe .
3 3 %G%o ~o
B R —— °8 ¢ 0 © 0 °
20 Q/ 20 frosien
— 0 = Xfoil tested
10 ‘ - - 10 : : ‘ :
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a[-] a -]
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The figure shows the results of the final iteration loop for the combination Re=1.05x 10”6, C,¢=0.5

Irrespective to the SM used, aerodynamic performance predictions are in good agreement with XFoil predictions. The aerofoil flow
physics is well represented, in both SM-based optimization, by the change in the airfoil geometry

ANN - Bi level LSM — Bi level
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/
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30 2 30 R ———————
/
20 ® - ANN 20 l———
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These results give at a glance the indication of the quality of SMs assisted optimization implemented in the Bi-level test-bed, using

PART Il: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

half of the computational effort required by the standard one
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Part 2: Case Studies and Lesson Learnt on ML and Fans

n\\ Machine-learning clustering methods applied to detection of noise sources
WSS in Jow-speed axial fan
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Grazm =S £ ==
High fidelity _ o | Algorithm selection Statistical analysis
numerical Dimensionality reduction optimization _ of clusters
SimU|ati0n Latent prOJeCtlon - S— :"‘ 30'Smid J_

High PCWE sources
204 & i

L 4
L2
=" o
10 - ! T 2 |o
f L2

Soluti

A:g:slip {r . i :1:
- S R
Raw data EDA Unsupervised learning Distilled knowledge

—

Tieghi, L., Becker, S., Corsini, A., Delibra, G., Schoder, S., & Czwielong, F.
(2023). Machine-learning clustering methods applied to detection of noise
sources in low-speed axial fan. Journal of Engineering for Gas Turbines and

. : . . o Power, 145(3), 031020.
Machine learning-assisted fan design: trends, challenges and applications 40
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LES simulations carried out in StarCCM+
The geometry represented a ducted inlet — free outlet test rig

The inlet and outlet planes are located 5 diameters up- and downstream of the

rotor region

The total domain length is 10.8D

Axial fan geometry and operating points

Rotational speed 1486 rpm
Hub diameter 250 mm
Tip diameter 497 mm
Casing diameter 500 mm
Tip clearance 1.5 mm
Volumetric flow rates 09-1.09-12 m/s
Number of blades 9 - View of the fan and scheme of the domain (meters)
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The PCWE model solves the acoustic wave propagation in the time domain TU
Grazm

1 D2¢a

V- V-

cs Dt? /

Scalar acoustic
potential

Source term

|f the mesh is rotating, the substantial derivate in the source term is corrected by the rotational velocity

The aeroacoustic source term of this equation is the substantial derivative of the incompressible flow pressure p'
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Exported during runtime computations with a 1000 Hz frequency
Very few clustering algorithms can treat million of data, therefore the analysis is carried out on a reduced dataset

It is obtained by generating two sampling cylindrical surfaces in the rotor region, S,y and S;;,, at 50% and 95% of the blade span

tip?

Exported Features

Feature number Feature
1 PCWE sources
2 P
3 k
4-6 Ui
7-9 dP/0x;
10-18 dU;/0x;

Sampling surfaces for reduced clustering: Sy, (R = 0.236 m) and S5 (R= 0.125 m)

Machine learning-assisted fan design: trends, challenges and applications 453
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Different strategies were investigated to explore the possibility of reducing the dimensionality of the dataset
Correlation analysis was exploited to understand the statistical significance of the features
PCA and t-SNE algorithms were tested for feature reduction

1 - 1.00
2
3 0.75
4 ]
5 0.50
6
—= 08

7 -
g 0.25 -%
5 W Feature number Feature £
10 0.00 ,l PCWE _'5
11 g
12 -0.25 2 P EM'
13 3 k g
14 E

L—0.50 _ : © 02
15 4-6 U, 0
16 7-9 0P /0x;

17 i ou./o T e e S S A
s 10-18 i/X]' Tl 2 3 4 5 6 7 8 9 1011 1213 KI5 6
[ [ — - Number of Components

1 23 4 5 6 7 8 91011 1213 1415 16 17 18 ~1.00 . . .
Explained variance as a function of the number of components
Correlation matrix heatmap for input data for 5 blade revolutions for the whole dataset
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Plotting samples on the two principal components arise patterns in data: - TU
*  Axial velocity U, is aligned with -x direction on S and with y direction on Sy, -> PCWE value is directly correlated with U,, this separation is not dependent Grazm
upon U,.
At S,,; PCWE sources are dependent on dU,/dt and dU,/dr, -> the work distribution along the blade span is responsible for this term.
At Sy, the PCWE distribution is dependent on U,, static pressure SP, dU/dr and pressure derivative with respect to radial direction dP/dr.
n o J = . — dUrdr
. Midspan : Ui —
0.2 dpde 0.2 i SP ’ dUxdx = dUtdr
0.50 = . dutdt
i E . "‘.;'Ldmdr :jﬂi‘ij

— dUxdt
dUxdx
— P

0.25

4 u
r
3] 0 0
0.00 S . « —lt
—x
e —
-0.25 -0.1 0.1 dPdr
Ur oo o — dpdt
—0.5 dPdx
i ' —— TKE
-0.50
-0.2 | -0.2
* dutdt
¥ dUsxdt
TKE
-0.75 =
R -0.2 0 0.2 L -0.2 0 0.2
PC1 PC1

-1.00

Projection of the training dataset on the PCA basis on the first three principal components Projection of Smid and Stip training dataset on the PCA basis on the first two principal components
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Likelihood of the clustering algorithms with PCWE distribution was == ==
evaluated using an image similarity algorithm — o os pg;.ra s 1o

The highest likelihood scores (>80%) were observed in the kMeans-
based algorithms with number of clusters > 20 and a reassignment
ratio of 0.05

Similar results were achieved by the GM algorithm, with 7-8
mixtures and a full covariance computation

Results from DBScan, although partially comparable with the other
two algorithms in Smid (likelihood score = 73%), were extremely
worse in the Stip region.

Comparison between the GM results with number of mixtures = 8 and full covariance matrix (left) and
normalized PCWE sources distribution (right) for midspan and tip sections.

Machine learning-assisted fan design: trends, challenges and applications 46
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. -1.0 05 0.0 0.5 1.0
Smid

Negative PCWE can be observed in the IDs 4-7

Accurate prediction in the regions with high magnitude of PCWE sources,
whereas less accurate in presence of levels that are gradually close to zero.

In the Smid section, PCWE sources at the leading edge are correctly
reproduced, apart from a region on the suction side at the 20% of blade
chord, that is incorrectly labeled as background, corresponding to ID=0

Comparison between the GM results with number of mixtures = 8 and full covariance matrix (left) and
normalized PCWE sources distribution (right) for midspan and tip sections.

Machine learning-assisted fan design: trends, challenges and applications 47
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Cluster 2 and 4 are compared with respect to significant features e == ==
In so doing, the contribution of the single features to the source level Smid 10 05 00 05 10

can be highlighted and further exploited

For example, of dP/dr are quite similar for both clusters (in fact dP/dr
had no correlation with PCWE) while distributions of dU/dr are different

dPdr dUtdr

3O_Smld 4

20 - % i L 2
1

10 H

-10 A

o

[+]
304 St 10
20 5

of &
o

-10 A 10

I 1 1 I
cluster 2 cluster 4 cluster 2 cluster 4

Distributions of scaled dP/dr and dUt/dr at midspan
and tip surfaces for cluster 2 and cluster 4.

Machine learning-assisted fan design: trends, challenges and applications 48

-5 Comparison between the GM results with number of mixtures = 8 and full covariance matrix (left) and
normalized PCWE sources distribution (right) for midspan and tip sections.
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A multidimensional extension of Balje chart for axial flow turbomachinery
using artificial intelligence-based meta-models



PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART

A=rC0C5

Balje standardized the design process

TR

of turbomachinery

*
Design charts reported the efficiency as
function of Ns and Ds
. . . | | ., , | Design Point : > =)
The issue regards the dimensionless of an ﬁ T g

s

the considered parameters

 Aim of the following work is the exploration of axial fan design space aiming at derive a set of multidimensional Balje charts,

where the main geometric and operational parameters are taken into account in addition to the specific speed and diameter

Angelini, Corsini, Delibra and Tieghi: A Multidimensional Extension of Balje
Chart for Axial Flow Turbomachinery Using Artificial Intelligence-Based
Meta-Models. J. Eng Gas Turbine and Power 2019. GTP-19-1439
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An enhanced in-house software has been exploited during the exploration. 7000

6000

5000

A Hyper-surface of solutions of axial flow fans performance has been derived.

—

= 4000
A

The geometric and operative ranges of the fan tested are shown in the table: H 3000

2000

1000 &8

Shroud diameter 02+25m L antN
Hub-to-tip ratio 0.25+0.75 (.3,7‘,2[?33/5{50 w0 e
Number of blades 4+16 0
Hub pitch disposition 15 + 60 deg
Mid-span solidity 0.25+1.15
Twist 5 +45 deg
RPM 600 + 3600 )
Number of simulations: 7313 100

107 10!
Ns 51
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PCA transformation

The population was initially analyzed by Principal Components Analysis (PCA). PCA3

PCA2

~

PCA1 ¥

S\

>

PCA reduces the dimensionality while retaining most of the variation in the data set.

PCA is applied to the main representative fan parameters:
 Tip Diameter (D)
« Solidity
 Aspect Ratio (AR=h/I)
* Hub-to-tip ratio (HR)
o Twist

*  Blade number (z) '
* Rotational speed (RPM) = gl 78%

o
(o]

 Flow rate (Q), Pressure ratio (P) E
2‘3 0.6

First 3 components account for the 78% of data-set variability (eloow method) §
0.4
0.2

of components 52
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B =g )= =43
Following analysis required the use of PLS.
| Dataset |

Data-set variables are divided in input and output variables. :

Geometry ' Ns,Ds
PLS creates orthogonal score vectors by maximizing the covariance between | : [T]
these two sets of variables. ; J L L
Ns and Ds are considered output variables of PLS process: t \/

PLS Analysis
1

Vo RPM}-\/E, g DLP
PZ \/a

The effect exerted by input on !
output is quantified computing Jll o |

loading vector : I

The fan geometric features are input of PLS analysis.

The aim is finding the relation between these geometric variables and Ns, Ds.
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PCA loadings contribution to 15t and 29, and 1t and 3™

components are reported.

Dt, solidity, z and RPM have the higher magnitude for the

1st component.

AR and HR have significant loading on 2" component,

positive and negative respectively.

The vector diagrams show that HR is completely
uncorrelated with Dt and RPM.

Twist has the largest loading on 3 component, resulting

strictly related to blade loading level.

Components

Components

HEl Component |
|| =3 Component2

AR

solidity TPpe

Component 2

Loadings

04 02 00 02

Compenent 1

0.4 0.6

HEl Component |
1 Component 3 |

Component 3

Loadings

04 02 00 02

Component 1

0.4 0.6
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PLS loading vector on 15t component shows the relationship between HR, solidity and z

Component |

and their influence on Ns and Ds

High values of these parameters determine increases in Ds while decrease Ns

A significant relation of twist angle and aspect ratio on Ns and Ds is highlighted

Twist results directly proportional to Ns, Ds, while the AR has an opposite trend resulting

indirectly proportional

Component 2
=)
o

The relationship between fan geometry and Ns, DS will define 3 combined parameters

(CP) used to better drive the exploration of Balje chart.

0o 1 2 3 4 5 6 7 8 09
Loadings
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First Composed Parameter
hub ratio solidity
PLS results allow defining 3 composed parameters (CP) Wp, - HR+w_, v
CP, = —=% =
. . . ' abs (WHR’1 + Wa,1)
CPi values define two-dimensional contour graphs on the Ns-Ds plane
CP, groups HR and sigma because are measure of two different “solidities” .
econd Composed Parameter
. . . . hub ratio blade count
HR and z was selected according to their loading values in CP, A :
CP - Wyp,HR+W, -2
) =
CP, grouping AR and twist is a measure of the blade global load abs (W, +.,)
Third Composed Parameter
blade twist aspect ratio (h/l)

K
Wiises " EWISE+ W | -AR

CP. =
’ abs (Wrwist,l + WAR,I)
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22¢ 221
2.0} 2.0¢
1.8} 1.8} -
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L4f 2y 14
121 121
1.0} 1.0}
%% % 1o B © 1 % 5 o
Ns Ns
CP, values decrease moving through higher Ns values while CP, contour lines have vertical trend with lower values at
high values are confined between Ns=(4-6). higher Ns.
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Data handling and feature preprocessing

With respect to standard ML practice, turbomachinery ML presents additional challenges:

»  Sparsity of data: Datasets cannot always be populated as desired due to practical limitations.

+ High dimensionality but...: Many engineering problems suitable for ML cannot be easily linearized, leading to an increased number of variables and greater model complexity.
» ... less is more: Reducing model complexity—including input features—offers significant advantages in terms of interpretability and performance.

Peculiarity of features: The statistical distributions of variables rarely follow standard forms, often exhibiting high skewness and kurtosis, which complicates data handling.

« Data availability: ML requires that all input features be available. Before starting, we should ask: "Will this input feature always be available?" Consider issues like varying
sampling frequencies or unsteady data.

CH, molar fraction
I 17% (UFL)

14%

H 11%

I' 7.5%
4.4% (LEL) ey
P

Poorly ventilated region upstream inlet plenum

Corsini, A., Delibra, G., Giovannelli, M., Lucherini, G., Minotti, S., Rossin, S., & Tieghi, L. (2020,
September). Prediction of Ventilation Effectiveness for LM9000 Package With Machine Learning.
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Data handling and feature preprocessing — Advanced tips

PART II: LESSON LEARNT

» PCAis your best friend: Principal Component Analysis (PCA) and other dimensionality reduction techniques are highly recommended during the preliminary stages of ML

model development.

»  Coordinate system transformation: Model generalization can often be improved by applying standard turbomachinery coordinate transformations (e.g., cylindrical

coordinates).

Feature normalization/standardization: Standard ML normalization techniques may not perform well, particularly with CFD data. Local normalization tends to yield better

results.

Qutliers are not always bad: While outliers are often discarded in standard ML practice, this is not advisable in turbomachinery ML. Outliers can represent critical localized
phenomena (e.g., shocks, boundary layers) that are essential to model

Experimental Dataset Data Augmentation Unsupervised Dimensionality Reduction Regression Validation
Geometry: Radius measurements in key Geometry: Measurements tolerance. Geometry: PCA SSIM:  Measure of the similarity
trol point t . between original and expected fields
control points over tip surfaces. y ol ) g e P {n
= 9z ‘7 B H 000 + o j 3'
0| +qs B e e % \ 1"_
P .AE I e o T u - »
Performance: phase-lock-averaged heat | Performance: measurement tolerance —+| Performance: AEs T . o v A
transfer and pressure measurements. and measured rms. b 0 = 4‘ Expected feld "
HT p Synthetic HT Synthetic P 4 \. [E ‘ \. g” | K
\ N Bl NS
Y A P = A
o M N B | oW Y B | o 9 o

Tucci, F. A., Delibra, G., Tieghi, L., Corsini, A., & Lavagnoli, S. (2023). Unsupervised Learning for High-
Fidelity Compression of Large Experimental Dataset: an Application to HPT Blade Tip Contouring.

JGO
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Model selection and implementation

» Don't overcomplicate model design: as long as the problem to solve is clearly formalized and input data makes sense, results should be sound even with “shallower” models.
» Implementation matters: even if differences are small, results may vary from implementation to implementation (e.g. Tensorflow, pyTorch, etc.)

* ANNs (+ PCA) are the bread and butter of TM ML algorithms: despite their known limitations, artificial neural networks can solve most of the supervised problems. PCA further helps
retaining the correlations in the original dataset.

 Not all unsupervised models are feasible: the scalability of some clustering methods (e.g. hierarchical) often prohibits their application —> kMeans.
Beware of boosting algorithms: boosting algorithms are tempting, however they generalization capability is poorer than we expect.
» Use ML models with caution: the limited extrapolation capability of the models require extra caution when applied to out-of-the-box scenarios.

FCL FCL

Xo.8, %eH> p, PRy 9
Ucr.B yB: 2B !
T Y = !
i @) = [oav ]
-/ RO ==
Y ©
) =)
\
Y
o] Skip connection ]
g SIRE
& A
oo (oo
i Cerbarano, D., Tieghi, L., Delibra, G., Minotti, S., & Corsini, A.

(2025). Modeling High-Pressure Hydrogen Gas Leakages
With Graph Neural Networks. Journal of Energy Resources
Technology, Part A: Sustainable and Renewable Energy, 1(3).

01

r Y ;
H FCL }—>|GCN|—)| FCL|

Process Unit

U-NET GCN for prediction of ventilated H, jets
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Model selection and implementation

Advanced ML methods and TM-ML applications rarely go along: even if fascinating, complex and advanced methods (like physic informed algorithms) have limited
applicability to real engineering problems. A difficulty of communication of the scopes between turbomachinery-ML users and ML experts exist!

Follow a simplified design: it's more efficient to start with a limited number of features, reduced number of samples and a reliable (and fast to train) algorithm and then
complicate the various aspects based on the desired scopes.

Support your models with knowledge: it is easier to improve an existing model than to train from scraps. Use this at your advantage.
If nothing works, check your data preprocessing: if the model performance are poor, look back at the exploratory data analysis and at feature preprocessing.

lmin [ | —

% /

. 1 i /

(e
Corsini, A., Delibra, G., Tieghi, L., & Tucci, F. A. (2021). / |/ 7 ? . lp /,
Cascade With Sinusoidal Leading Edges: Identification 1| é . R _all & _

And Quantification of Deflection With Unsupervised NC =7 NC =8 NC=9
Machine Learning. Cluster ID

12 34567839 62
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N A HUMBLE REQUEST FOR HELP
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This afternoon @ 14:45 there will be a dedicated panel discussion regarding the use of Al in the fan industry.
Help us by taking a very short survey on your experience and thoughts — results will be discussed during the panel.

This panel brings together experts from industry and academia to explore the potential of Al, the hurdles we may face, and how reliable and
impactful Al-driven methods can truly be.

M Room 4: Ella Fitzge rald
THURSDAY 10 APRIL

830 - 920

Al & Machine Learning in Fan
Applications

This survey aims to assess the current level of awareness, experience, and perception of Scan the QR code with
Al/ML applications among turbomachinery experts. your smartphone camera

10 Questions — completely anonymous to access the survey.
https://forms.gle/LPLME8k

\ 49pzNdBRX8 /
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FINAL REMARKS
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Al & ML bring a new research paradigm to turbomachinery and fan applications.

Al'& ML can be applied at various stages of a fan's lifecycle — from speculative research aimed at uncovering hidden patterns in data, to optimization and
validation processes, and finally, to supporting operation and maintenance policies.

At this stage, significant efforts are required to integrate Al and ML into industrial processes.
While isolated, highly effective applications exist, they are far from constituting a smart, intelligent system.

The role of the engineer and turbomachinery expert cannot be substituted: physics must be incorporated either
formally into the problem or through our supervision.

With generative algorithms becoming predominant, it will be possible to achieve results in a matter of minutes, even
without expertise in the field. However, this lack of expertise could be one of the main sources of unreliability in ML.

Scan the QR code with
ML and Al should be viewed as helpful tools to support our work as researchers and engineers, rather than as your smartphone camera
. to access the survey.
solutions for all problems.

https://forms.ale/LPLME8k

\ 49pzNdBRX8 /
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LIST OF ACTIONS
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Research
Leverage the gap between ML research and ML-TM research
Create best practices, methods and standards to support the development of this discipline

Communication
Enhance exchange of ideas and opinion and create dedicated event for the discussion (a special thank to Fan
conference)

Create open dataset and public database of fans (and TMs), to engage the engineering community and
promote standardization

Industrialization

Promote the application of ML- and Al-based solutions in the workflow, with particular attention to the R&D
phase

Expose the most limiting factors and obstacles to the development of this field.

Scan the QR code with
your smartphone camera
to access the survey.
https://forms.gle/LPLME8K

Education
Introduce ML topics and applications to students and future engineers during the TM-related courses \ 49pzNd6RX8 /
Create specialized courses for TM expert, with a practical approach to the problem
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N A HUMBLE REQUEST FOR HELP
g = =5 )=l

This afternoon @ 14:45 there will be a dedicated panel discussion regarding the use of Al in the fan industry.
Help us by taking a very short survey on your experience and thoughts — results will be discussed during the panel.

This panel brings together experts from industry and academia to explore the potential of Al, the hurdles we may face, and how reliable and
impactful Al-driven methods can truly be.

M Room 4: Ella Fitzge rald
THURSDAY 10 APRIL

830 - 920

Al & Machine Learning in Fan
Applications

This survey aims to assess the current level of awareness, experience, and perception of Scan the QR code with
Al/ML applications among turbomachinery experts. your smartphone camera

10 Questions — completely anonymous to access the survey.
https://forms.gle/LPLME8k
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