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Machine learning-assisted fan design: trends, challenges and applications

Prompt to ChatGPT4.0: Estimate the dimensions, power absorption and rpm of an axial fan that operates in an air-cooled 
condenser with 333 m3/s of volumetric flow rate and 115 Pa of static pressure rise.

A PROVOCATIVE APPROACH TO AI
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And down the rabbit hole, 
with «stage» design, velocity
triangles and on…
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Blade layout (??) Velocity triangle (?)

TM expertsAI

151 rpm400-800 rpm

𝜓 = 0.093𝜓 = 0.0486
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Is AI the future of turbomachinery and fans?
A WELL-FOUNDED CONCERN 
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Part 1: Introduction to Machine Learning and Its Role in Fan Research 

Basics of Machine Learning 

• Supervised, Unsupervised, and Reinforcement Learning

• Data sources: IoT sensors, performance testing, simulations

Context 

• The growing role of AI/ML in engineering, manufacturing, and aerodynamics

ML Applications in Fan Technology 
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DEFINITIONS OF MACHINE LEARNING
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General Definition - Arthur Samuel's Definition (1959): 
"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.”

Technical Definition:
Machine learning is the study of algorithms that improve automatically through experience and data, often using statistical and 
probabilistic methods to identify patterns and make informed decisions.

Tom Mitchell's Definition (1997):
"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its 
performance on T, as measured by P, improves with experience E”.

Practical Definition (Industry-focused):
Machine learning is the process of training computers to recognize patterns and make decisions based on data, used in a wide range of 
applications.
Practical Definition (Engineering-focused)
A way to derive very complex regression models.
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A BIT OF TAXONOMY
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Machine Learning

Represents a way to “automate” the construction of an analytical model to give computer systems the
ability to "learn" from data, without being explicitly programmed. Training phase involves the use of large
amounts of data and an efficient algorithm in order to adapt (and improve) according to the situations that
occur.

Artificial Intelligence

Involves all those operations characteristic of human intellect and performed by computers. These
include planning, language comprehension, object and sound recognition, learning and problem solving.
Not all AI are based on statistical learning as they can be condition-based programs (e.g. Chatbot)

Deep Learning

Uses huge models of neural networks with various processing
units; exploits computational advances and training techniques
to learn complex models through an enormous amount of data.
Common applications include image and speech recognition.

A computer program is said to 
learn from experience E with 
respect to some task T and some 
performance measure P, if its 
performance on T, as measured by 
P, improves with experience E.

—Tom Mitchell, 1997
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Data 
collection

Model 
building Learning Training Evaluation

SOURCES OF DATA
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ML MODEL

Open Research Data – papers 
Private Data – company and sensitive data
Sensor Data, Logs & Events
Data from manufacturers
Open Source Datasets
Surveys & Feedback
Web Scraping & APIs 
Crowdsourced Data
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Sources of data for ML applications can be 
diverse. 
Common examples include experimental data, 
numerical simulations, IoT, sensor networks, 
and more. 
Although the ML and TM communities are 
growing, significant efforts must still be made to 
create open datasets and share both data and 
knowledge. 
The confidentiality of data may, however, 
partially hinder its development.
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Data 
collection

Model 
building Learning Training Evaluation

Supervised Learning
• Learns from labeled data (input-output pairs).
• Used for classification (e.g., fault diagnosis) & regression (e.g., performance prediction).
Unsupervised Learning
• Learns from unlabeled data, discovering hidden patterns.
• Used for clustering (e.g., pattern recognition) & dimensionality reduction (e.g., PCA).
Reinforcement Learning (RL)
• Learns by interacting with an environment and receiving rewards/penalties.
• Used where self-learning is needed (e.g. controllers).

APPROACHES TO LEARNING
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Practical Definition (Engineering-focused)
A complex way to derive very complex and powerful models.

A TURBOMACHINERY-CENTRIC VIEW OF ML
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In engineering applications, ML can be used to solve a wide range of tasks, from computer vision to anomaly detection.

Similarly, ML models can be used in turbomachinery applications as a more powerful alternative to statistical/traditional 
methods.

However, transferring the already established knowledge of ML to turbomachinery (and fans) is still an open debate. 

"The MNIST Database of handwritten digits“, LeCun et al.

?

“A fast prediction model of blade flutter in turbomachinery based on 
graph convolutional neural network”, Liu et. Al - adapted
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Machine Learning (ML) and Artificial Intelligence (AI) are widely used across 

various industrial applications, from design to customer care.

However, rather than viewing AI/ML as a highly adaptable and intelligent system, it 

is more accurate to see it as a collection of specialized models, each excelling at a 

specific task.

These models have limited ability to extrapolate or generalize and, in most cases, 

cannot learn from new experiences unless explicitly programmed to do so.

This approach is known as Narrow AI, emphasizing its restricted scope of operation.

THE ROLE OF AI/ML IN INDUSTRY 4.0
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“Integrating artificial intelligence in industry 4.0: insights,
challenges, and future prospects–a literature review”, Gabsi

A.Narrow AI can be considered the current level of technological development in 
turbomachinery
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THE UPCOMING ROLE OF AI/ML IN INDUSTRY 5.0
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In industry 5.0 a shift from Narrow AIto a General AI

or Industrial AI must occur.

This is a long process, as it would require to shift 

the paradigm of current models from basic learners 

to advanced (and expensive) smart systems.

This novel and complex digital system will be 

founded on three pillars:

1. Collaborative intelligence 

2. Self-learning intelligence

3. Crowd intelligence Reference frame of IndAI applications – Leng et al. 
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• During the turbomachinery design phase, ML can assist, 
enhance, or even fully replace existing models. ML can 
optimize blade shape or predict TM performance using a 
computation-free approach (as shown later).

• In the validation stage, ML can be applied to advanced 
turbulence modeling, surrogate modeling, or flow field 
analysis and investigation using experimental data.

• ML can also be utilized for operations and maintenance 
(O&M) monitoring and decision-making.

• Each of these tasks requires different methods, and within 
this framework, they are largely independent of one 
another.

AI/ML AND TURBOMACHINERY 

16The role of ML within TM applications – Zou et al. 

Narrow AI can be considered the current level of technological 
development in turbomachinery
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The great increase of data-driven methods applied in turbomachinery especially for aerospace applications, is gradually 
leading to novel developments also for industrial fans.
Notable applications:

ML & FAN
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Exploration of performance charts: unsupervised methods and dimensionality reduction 
Design and optimization: supervised methods for blade shape and geometrical parameter optimization (e.g. volute 
shape)
Prognosis & fault diagnostic: : supervised methods to assess reliability, damage and RULE of fans
Control and efficiency improvement: supervised and reinforced learning for energy consumption reduction, on large 
systems
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Overview of The Best 2020 AxialFlow Fan Data and Inclusion in Similarity Charts for the Search of the Best Design
Masi M., et al. Journal of Turbomachinery 144.9 (2022): 091012.

Scopes: Exploration of catalogue data
Methodology: a statistical survey of 500 axial-flow fan performance based on data from catalogues of major manufacturers and compares the resulting Cordier lines with optimum fan 
designs from empirical or computational fluid-dynamics (CFD)-based models available in the literature
Model: statistical survey
Result: determination of the optimal characteristics of the fan designs, as well as novel and old trends

BIG DATA & FAN: EXPLORATION OF CATALOGUE DATA
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Marginal plot of the rotation 
speed against fan diameter

Marginal plot of the rotation 
speed against fan diameter Aeraulic efficiency Balje charts of year 20 ducted fan

types (top), CR fans (top-middle), VA fans (middle-bottom), and
TA fans (bottom)
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Machine-learning and CFD based optimization and comprehensive experimental study on diagonal flow fan for energy conservation and efficiency enhancement
Zhou, Shuiqing, et al., Engineering Applications of Computational Fluid Mechanics 18.1 (2024): 2310608, 2024.

Scopes: Multi-objective optimization (pressure, sound emissions and efficiency) of the outlet guide vane of a mixed flow fan
Methodology: rotor-stator axial spacing, OGV camber line radius, length and location are varied and simulated through CFD. LS-SVM is trained and used as evaluation function in 
GA-PSO coupling. 
Model: Least Squares – Support Vector Machine + Genetic Algorithms with Particle Swarm Optimization
Result: 106 Pa increase in total pressure, a 3.6 dB reduction in noise levels, and 16.3% enhancement in total pressure efficiency

ML & FAN: BLADE SHAPE OPTIMIZATION

19
Framework Optimization parameters Comparison between baseline and optimized geometries
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Off-design performance analysis of a radial fan using experimental, computational, and artificial intelligence approaches
Moradihaji et al., European Journal of Mechanics-B/Fluids 104 (2024): 150-172.

Scopes: Predict the off-design performance of a radial fan using machine learning
Methodology: 70 numerical simulations of off-design operations, the artificial neural network is used as a surrogate performance map of the fan
Model: Deep Artificial Neural Networks, Support Vector Machine, Random Forest
Result: results are comparable to CFD simulations, however the model shows limited extrapolation capability

ML & FAN: FAN CONTROL

20
Model performance Model extrapolation Surrogate mdoelling of map performance
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Predicting the Operability of Damaged Compressors Using Machine Learning
Taylor J. V., European Journal of Mechanics-B/Fluids 104 (2024): 150-172.

Scopes: Predict the off-design performance of a radial fan using machine learning
Methodology: novel MRP method, composed by machine learning, rapid test to provide the training experimental data, and physical parameters drawn from engineering 
Model: Neural networks
Result: the method can predict the operability with an accuracy of 2% in a 95% confidence interval

ML & FAN COMPRESSOR: BLADE EROSION

21

Prediction of the blade damage through MRP method

Model performance with different levels of damage
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Fan Fault Diagnosis Using Acoustic Emission and Deep Learning Methods
Ciaburro, Giuseppe, et al. Informatics. Vol. 10. No. 1. MDPI, 2023.

Scopes: Detection of possible failure condition of an axial fan
Methodology: the recording of the acoustic emission and the failure diagnosis using deep learning was evaluated for the detection of dust deposits on the blades of an axial fan
Model: Convolutional Neural Network for a binary classification problem
Result: 95 % of accuracy in detecting blade fouling

ML & FAN: FAULT DIAGNOSIS

22

Fault diagnosis CNN-based framework From spectrogram to blade state prediction
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Optimized and Energy Efficient Server Fan Control Using Deep Reinforcement Learning Method.
Fulpagare, Yogesh, et al., Journal of Building Engineering (2025): 112306.

Scopes: Development of a controller to achieve energy consumption of server fans 
Methodology: controllers are implemented in an experimental apparatus, the controller takes decisions in real-time and is optimized during the tests.
Model: Deep Deterministic Policy Gradient algorithm (DDPG)
Result: the fan power consumption and overheating are reduced to 53 % and 9 %, respectively

ML & FAN: FAN CONTROL

23
Framework Fans and system configurations Fan power for different scenarios - adapted
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Surrogate-based optimization of truly reversible blade profiles for axial fans

Machine-learning clustering methods applied to detection of noise sources 
in low-speed axial fan

A multidimensional extension of Balje chart for axial flow turbomachinery 
using artificial intelligence-based meta-models

Lesson learnt & practical tips
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This work presents a study on the SM based methodology to obtain a set of optimized aerofoils shapes for the use in reversible fan blading. It addresses the following
question: how meta-model techniques affect results of multi objectives optimization and how these meta-models should be exploited in an optimization test-bed.

Truly reversible airfoil

Objective functions

1) Aerodynamic efficiency      

2) Stall margin

Geometry parameterization

The selected scheme is a 6th degree B-spline parameterization
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Background PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

Angelini, G., Bonanni, T., Corsini, 
A., Delibra, G., Tieghi, L., & 

Volponi, D. (2018). On surrogate-
based optimization of truly 

reversible blade profiles for axial 
fans. Designs, 2(2), 19.
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Optimization algorithm

Non-dominated sorting genetic algorithm (NSGA-II), Deb 2012. NSGA-II combines non-dominated sorting
with a diversity-preserving mechanism based on crowding distance

Test matrix

A matrix of 25 optimization cases representing common operations for tunnel and metro fans was defined by 
means combinations of 5 values Re and 5 values CLS

180000014250001050000675000300000Re

0.90.70.50.30.1CLS

Data Sampling

The design space includes 8 parameters 1 3 3 4( , , , , , , , )LSa2 a2 a a a aF X Y Y X Y Y Re C

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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Optimizer: NSGA-II

Initial Population:
40 reversible aerofoils

Test Functions

Extended Population

Non dominated sorting + 
Crowding distance= Pareto 

Front

Next generation

10
 g
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ns

Design space

Target 
operations

Optimizer

Optimized
Aerofoils

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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Optimizer: NSGA-II

Initial Population:
40 reversible aerofoils

Test Functions

Extended Population

Non dominated sorting + 
Crowding distance= Pareto 
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Next generation
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operations

Optimizer

Optimized
Aerofoils

SM : LSM, ANN
Bi- level framework

SM : LSM, ANN
Single level framework

XFoil (MOEA)

• XFoil was used as test function in the 
standard optimization 

• To reduce the computational effort,  
LSM and ANN meta-models were 
developed

Background PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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XFoil (MOEA)

SM : LSM, ANN
Bi- level framework

SM : LSM, ANN
Single level framework

Least square method (LSM)

The fitness function was approximated using a second-order polynomial response 
surface.

The polynomial quantify the relation between the objectives vector (O) and the 
factors (F).

A least square method fit approach enables the estimation of the polynomial 
regressors ().
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Artificial Neural Network (ANN)

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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SM : LSM, ANN
Bi- level framework

SM : LSM, ANN
Single level framework

XFoil (MOEA)

LSM

Artificial Neural Network (ANN)

Multi-layer perceptron 

One hidden layer, 
25 neurons

ANN was trained using a Bayesian optimization algorithm, randomly initializing weights 
and biases between 1 and -1

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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XFoil (MOEA)

Single level framework

It’s also called No evolution control (NEC) approach 

The SMs are used in the MOOP framework
without any assessment against the original
fitness function

In the simple-level approach the optimization is
Entirely driven by the SMs

Bi-level framework

DOE

SM training

SM : LSM, ANN
Bi- level framework

SM : LSM, ANN
Single level framework NSGA-II

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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XFoil (MOEA)
Bi-level framework

The Bi-level framework advocates the use of 
fitness function during EA process

Two stage approach: 
• a number of solutions are produced and 

evaluated using the SM. 

• The best solutions are then evaluated with
the original fitness function to enrich the
sampling data set from which the SMs are derived

DOE

SM training

NSGA-II

XFoil test

N
ew

 sa
m

pl
es

SM : LSM, ANN
Bi- level framework

SM : LSM, ANN
Single level framework

Single level framework
DOE

SM training

NSGA-II

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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The standard MOEA results are illustrated. The selected objective function was based on XFoil. 

The dotted line is the initial frontier. The optimization technique should move this imaginary frontier toward higher efficiencies and stall margins. 

The results for all Re and CLS combinations of the text matrix after 10 generations are shown.

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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MOOP was solved using NSGA-II algorithm assisted by developed meta-models using the single level approach

ANN - Single level LSM – Single level

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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The figure shows the results of the final iteration loop for the combination Re=1.05×10^6, CLS=0.5

Irrespective to the SM used, aerodynamic performance predictions are in good agreement with XFoil predictions. The aerofoil flow 
physics is well represented, in both SM-based optimization, by the change in the airfoil geometry

ANN - Bi level LSM – Bi level

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS
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These results give at a glance the indication of the quality of SMs assisted optimization implemented in the Bi-level test-bed, using 
half of the computational effort required by the standard one

PART II: SURROGATE-BASED OPTIMIZATION OF TRULY REVERSIBLE BLADE PROFILES FOR AXIAL FANS

38



Part 2: Case Studies and Lesson Learnt on ML and Fans 

Surrogate-based optimization of truly reversible blade profiles for axial fans

Machine-learning clustering methods applied to detection of noise sources 
in low-speed axial fan

A multidimensional extension of Balje chart for axial flow turbomachinery 
using artificial intelligence-based meta-models

Lesson learnt & practical tips
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN

40

High fidelity 
numerical 
simulation

Dimensionality reduction 
Latent projection

Algorithm selection 
optimization

Statistical analysis 
of clusters

Raw data EDA Unsupervised learning Distilled knowledge

Tieghi, L., Becker, S., Corsini, A., Delibra, G., Schoder, S., & Czwielong, F. 
(2023). Machine-learning clustering methods applied to detection of noise 

sources in low-speed axial fan. Journal of Engineering for Gas Turbines and 
Power, 145(3), 031020.
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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LES simulations carried out in StarCCM+

The geometry represented a ducted inlet – free outlet test rig

The inlet and outlet planes are located 5 diameters up- and downstream of the

rotor region

The total domain length is 10.8D

View of the fan and scheme of the domain (meters)

rpm1486Rotational speed

mm250Hub diameter

mm497Tip diameter

mm500Casing diameter

mm1.5Tip clearance

m3/s0.9 – 1.09 – 1.2Volumetric flow rates

-9Number of blades

Axial fan geometry and operating points
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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The PCWE model solves the acoustic wave propagation in the time domain

1
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Source term

If the mesh is rotating, the substantial derivate in the source term is corrected by the rotational velocity

The aeroacoustic source term of this equation is the substantial derivative of the incompressible flow pressure pic

A
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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Exported during runtime computations with a 1000 Hz frequency

Very few clustering algorithms can treat million of data, therefore the analysis is carried out on a reduced dataset 

It is obtained by generating two sampling cylindrical surfaces in the rotor region, Smid and Stip, at 50% and 95% of the blade span  

FeatureFeature number
PCWE sources1

P2
k3
Ui4-6

𝜕P/𝜕x୧7-9
𝜕U୧/𝜕x୨ 10-18

Exported Features

Sampling surfaces for reduced clustering: Stip (R = 0.236 m) and Smid (R= 0.125 m)
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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Different strategies were investigated to explore the possibility of reducing the dimensionality of the dataset

Correlation analysis was exploited to understand the statistical significance of the features

PCA and t-SNE algorithms were tested for feature reduction

Correlation matrix heatmap for input data

FeatureFeature number
PCWE1

P2
k3
Ui4-6

𝜕P/𝜕x୧7-9
𝜕U୧/𝜕x୨ 10-18

Explained variance as a function of the number of components 
for 5 blade revolutions for the whole dataset
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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Plotting samples on the two principal components arise patterns in data:

• Axial velocity Ux is aligned with -x direction on Smid and with y direction on Stip -> PCWE value is directly correlated with Ux, this separation is not dependent 
upon Ux.  

• At Smid PCWE sources are dependent on dUx/dt and dUt/dr, -> the work distribution along the blade span is responsible for this term.

• At Stip the PCWE distribution is dependent on Ux, static pressure SP, dUi/dr and pressure derivative with respect to radial direction dP/dr.

Projection of the training dataset on the PCA basis on the first three principal components

Midspan Tip

Projection of Smid and Stip training dataset on the PCA basis on the first two principal components
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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• Likelihood of the clustering algorithms with PCWE distribution was 
evaluated using an image similarity algorithm

• The highest likelihood scores (>80%) were observed in the kMeans-
based algorithms with number of clusters > 20 and a reassignment 
ratio of 0.05

• Similar results were achieved by the GM algorithm, with 7-8 
mixtures and a full covariance computation

• Results from DBScan, although partially comparable with the other 
two algorithms in Smid (likelihood score = 73%), were extremely 
worse in the Stip region.

Comparison between the GM results with number of mixtures = 8 and full covariance matrix (left) and 
normalized PCWE sources distribution (right) for midspan and tip sections.
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PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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• Likelihood of the clustering algorithms with PCWE distribution was evaluated 
using an image similarity algorithm

• The highest likelihood scores (>80%) were observed in the kMeans-based 
algorithms with number of clusters > 20 and a reassignment ratio of 0.05

• Similar results were achieved by the GM algorithm, with 7-8 mixtures and a 
full covariance computation

• Results from DBScan, although partially comparable with the other two 
algorithms in Smid (likelihood score = 73%), were extremely worse in the Stip
region.

• Regions that show high positive PCWE levels, correspond to the cluster ID 1,2 
and 3. 

• Negative PCWE can be observed in the IDs 4-7

• Accurate prediction in the regions with high magnitude of PCWE sources, 
whereas less accurate in presence of levels that are gradually close to zero.

• In the Smid section, PCWE sources at the leading edge are correctly 
reproduced, apart from a region on the suction side at the 20% of blade 
chord, that is incorrectly labeled as background, corresponding to ID=0

Comparison between the GM results with number of mixtures = 8 and full covariance matrix (left) and 
normalized PCWE sources distribution (right) for midspan and tip sections.



Machine learning-assisted fan design: trends, challenges and applications

PART II: MACHINE-LEARNING CLUSTERING FOR NOISE SOURCES IN AXIAL FAN
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Cluster 2 and 4 are compared with respect to significant features

In so doing, the contribution of the single features to the source level 
can be highlighted and further exploited

For example, of dP/dr are quite similar for both clusters (in fact dP/dr 
had no correlation with PCWE) while distributions of dU/dr are different

Comparison between the GM results with number of mixtures = 8 and full covariance matrix (left) and 
normalized PCWE sources distribution (right) for midspan and tip sections.

Distributions of scaled dP/dr and dUt/dr at midspan 
and tip surfaces for cluster 2 and cluster 4.



Part 2: Case Studies and Lesson Learnt on ML and Fans 

Surrogate-based optimization of truly reversible blade profiles for axial fans

Machine-learning clustering methods applied to detection of noise sources 
in low-speed axial fan

A multidimensional extension of Balje chart for axial flow turbomachinery 
using artificial intelligence-based meta-models

Lesson learnt & practical tips
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Balje standardized the design process

of turbomachinery 

Design charts reported the efficiency as 

function of Ns and Ds

The issue regards the dimensionless of 

the considered parameters

PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART

• Aim of the following work is the exploration of axial fan design space aiming at derive a set of multidimensional Balje charts,

where the main geometric and operational parameters are taken into account in addition to the specific speed and diameter

50

Angelini, Corsini, Delibra and Tieghi: A Multidimensional Extension of Balje 
Chart for Axial Flow Turbomachinery Using Artificial Intelligence-Based 

Meta-Models. J. Eng Gas Turbine and Power 2019. GTP-19-1439
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An enhanced in-house software has been exploited during the exploration.

A Hyper-surface of solutions of axial flow fans performance has been derived.

The geometric and operative ranges of the fan tested are shown in the table:

Number of simulations: 7313

0.2 ÷ 2.5 m        Shroud diameter
0.25 ÷ 0.75Hub-to-tip ratio

4 ÷ 16      Number of blades
15 ÷ 60 degHub pitch disposition
0.25 ÷ 1.15Mid-span solidity
5 ÷45 degTwist
600 ÷ 3600RPM

PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART

51



Machine learning-assisted fan design: trends, challenges and applications

The population was initially analyzed by Principal Components Analysis (PCA).

PCA reduces the dimensionality while retaining most of the variation in the data set.

PCA is applied to the main representative fan parameters:
• Tip Diameter (Dt)
• Solidity
• Aspect Ratio (AR=h/l)
• Hub-to-tip ratio (HR)
• Twist
• Blade number (z)
• Rotational speed (RPM)
• Flow rate (Q), Pressure ratio (P)

First 3 components account for the 78% of data-set variability (elbow method)

Elbow chart

PCA transformation

3

78%

PCA1

PCA2
PCA3

PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART

52



Machine learning-assisted fan design: trends, challenges and applications

Following analysis required the use of PLS.

Data-set variables are divided in input and output variables.

PLS creates orthogonal score vectors by maximizing the covariance between 

these two sets of variables.

Ns and Ds are considered output variables of PLS process:

The fan geometric features are input of PLS analysis.

The aim is finding the relation between these geometric variables and Ns, Ds. 
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PCA loadings contribution to 1st and 2nd, and 1st and 3rd

components are reported.

Dt, solidity, z and RPM have the higher magnitude for the

1st component.

AR and HR have significant loading on 2nd component,

positive and negative respectively.

The vector diagrams show that HR is completely

uncorrelated with Dt and RPM.

Twist has the largest loading on 3rd component, resulting

strictly related to blade loading level.

PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART
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PLS loading vector on 1st component shows the relationship between HR, solidity and z

and their influence on Ns and Ds

High values of these parameters determine increases in Ds while decrease Ns

A significant relation of twist angle and aspect ratio on Ns and Ds is highlighted

Twist results directly proportional to Ns, Ds, while the AR has an opposite trend resulting

indirectly proportional

The relationship between fan geometry and Ns, DS will define 3 combined parameters

(CP) used to better drive the exploration of Balje chart.

PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART
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PLS results allow defining 3 composed parameters (CP)

CPi values define two-dimensional contour graphs on the Ns-Ds plane

CP1 groups HR and sigma because are measure of two different “solidities”

HR and z was selected according to their loading values in CP2

CP3 grouping AR and twist is a measure of the blade global load
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CP1 values decrease moving through higher Ns values while 

high values are confined between Ns=(4-6). 

CP2  contour lines have vertical trend with lower values at 

higher Ns.

PART II: A MULTIDIMENSIONAL EXTENSION OF BALJE CHART
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Part 2: Case Studies and Lesson Learnt on ML and Fans 

Surrogate-based optimization of truly reversible blade profiles for axial fans

Machine-learning clustering methods applied to detection of noise sources 
in low-speed axial fan

A multidimensional extension of Balje chart for axial flow turbomachinery 
using artificial intelligence-based meta-models

Lesson learnt & practical tips
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PART II: LESSON LEARNT

Data handling and feature preprocessing
With respect to standard ML practice, turbomachinery ML presents additional challenges:
• Sparsity of data: Datasets cannot always be populated as desired due to practical limitations.
• High dimensionality but…: Many engineering problems suitable for ML cannot be easily linearized, leading to an increased number of variables and greater model complexity.
• … less is more: Reducing model complexity—including input features—offers significant advantages in terms of interpretability and performance.
• Peculiarity of features: The statistical distributions of variables rarely follow standard forms, often exhibiting high skewness and kurtosis, which complicates data handling.
• Data availability: ML requires that all input features be available. Before starting, we should ask: "Will this input feature always be available?" Consider issues like varying 

sampling frequencies or unsteady data.

Poorly ventilated region upstream inlet plenum

Corsini, A., Delibra, G., Giovannelli, M., Lucherini, G., Minotti, S., Rossin, S., & Tieghi, L. (2020, 
September). Prediction of Ventilation Effectiveness for LM9000 Package With Machine Learning. 59
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PART II: LESSON LEARNT

Data handling and feature preprocessing – Advanced tips

Tucci, F. A., Delibra, G., Tieghi, L., Corsini, A., & Lavagnoli, S. (2023). Unsupervised Learning for High-
Fidelity Compression of Large Experimental Dataset: an Application to HPT Blade Tip Contouring. 

• PCA is your best friend: Principal Component Analysis (PCA) and other dimensionality reduction techniques are highly recommended during the preliminary stages of ML 
model development.

• Coordinate system transformation: Model generalization can often be improved by applying standard turbomachinery coordinate transformations (e.g., cylindrical 
coordinates).

• Feature normalization/standardization: Standard ML normalization techniques may not perform well, particularly with CFD data. Local normalization tends to yield better
results.

• Outliers are not always bad: While outliers are often discarded in standard ML practice, this is not advisable in turbomachinery ML. Outliers can represent critical localized 
phenomena (e.g., shocks, boundary layers) that are essential to model 
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PART II: LESSON LEARNT

Model selection and implementation
• Don’t overcomplicate model design: as long as the problem to solve is clearly formalized and input data makes sense, results should be sound even with “shallower” models. 
• Implementation matters: even if differences are small, results may vary from implementation to implementation (e.g. Tensorflow, pyTorch, etc.)
• ANNs (+ PCA) are the bread and butter of TM ML algorithms: despite their known limitations,  artificial neural networks can solve most of the supervised problems. PCA further helps 

retaining the correlations in the original dataset.
• Not all unsupervised models are feasible: the scalability of some clustering methods (e.g. hierarchical) often prohibits their application –> kMeans.
• Beware of boosting algorithms: boosting algorithms are tempting, however they generalization capability is poorer than we expect. 
• Use ML models with caution: the limited extrapolation capability of the models require extra caution when applied to out-of-the-box scenarios.

U-NET GCN for prediction of ventilated H2 jets

Cerbarano, D., Tieghi, L., Delibra, G., Minotti, S., & Corsini, A. 
(2025). Modeling High-Pressure Hydrogen Gas Leakages 
With Graph Neural Networks. Journal of Energy Resources 

Technology, Part A: Sustainable and Renewable Energy, 1(3).
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PART II: LESSON LEARNT

Model selection and implementation

Corsini, A., Delibra, G., Tieghi, L., & Tucci, F. A. (2021). 
Cascade With Sinusoidal Leading Edges: Identification 

And Quantification of Deflection With Unsupervised 
Machine Learning. 

• Advanced ML methods and TM-ML applications  rarely go along: even if fascinating, complex and advanced methods (like physic informed algorithms) have limited 
applicability to real engineering problems. A difficulty of communication of the scopes between turbomachinery-ML users and ML experts exist!

• Follow a simplified design: it’s more efficient to start with a limited number of features, reduced number of samples and a reliable (and fast to train) algorithm and then 
complicate the various aspects based on the desired scopes.

• Support your models with knowledge: it is easier to improve an existing model than to train from scraps. Use this at your advantage.
• If nothing works, check your data preprocessing: if the model performance are poor, look back at the exploratory data analysis and at feature preprocessing.

62



OUTLINE

Part 1: Introduction to Machine Learning and Its Role in Fan Research (15 min)

Part 2: Case Studies and Lesson Learnt on ML and Fans (30 min)

Part 3: Conclusion & Q&A (10 min)
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A HUMBLE REQUEST FOR HELP

This afternoon @ 14:45 there will be a dedicated panel discussion regarding the use of AI in the fan industry.
Help us by taking a very short survey on your experience and thoughts – results will be discussed during the panel.
This panel brings together experts from industry and academia to explore the potential of AI, the hurdles we may face, and how reliable and 
impactful AI-driven methods can truly be.

10 Questions – completely anonymous

Scan the QR code with 
your smartphone camera 

to access the survey.
https://forms.gle/LPLME8k

49pzNd6RX8

64



Machine learning-assisted fan design: trends, challenges and applications

FINAL REMARKS

AI & ML bring a new research paradigm to turbomachinery and fan applications.

AI & ML can be applied at various stages of a fan's lifecycle – from speculative research aimed at uncovering hidden patterns in data, to optimization and 
validation processes, and finally, to supporting operation and maintenance policies.

At this stage, significant efforts are required to integrate AI and ML into industrial processes.
While isolated, highly effective applications exist, they are far from constituting a smart, intelligent system.

Scan the QR code with 
your smartphone camera 

to access the survey.
https://forms.gle/LPLME8k

49pzNd6RX8

The role of the engineer and turbomachinery expert cannot be substituted: physics must be incorporated either 
formally into the problem or through our supervision.

With generative algorithms becoming predominant, it will be possible to achieve results in a matter of minutes, even 
without expertise in the field. However, this lack of expertise could be one of the main sources of unreliability in ML.

ML and AI should be viewed as helpful tools to support our work as researchers and engineers, rather than as 
solutions for all problems.
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LIST OF ACTIONS
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Scan the QR code with 
your smartphone camera 

to access the survey.
https://forms.gle/LPLME8k

49pzNd6RX8

Research
Leverage the gap between ML research and ML-TM research
Create best practices, methods and standards to support the development of this discipline

Communication
Enhance exchange of ideas and opinion and create dedicated event for the discussion (a special thank to Fan 
conference)
Create open dataset and public database of fans (and TMs), to engage the engineering community and 
promote standardization

Industrialization
Promote the application of ML- and AI-based solutions in the workflow, with particular attention to the R&D 
phase
Expose the most limiting factors and obstacles to the development of this field.

Education
Introduce ML topics and applications to students and future engineers during the TM-related courses
Create specialized courses for TM expert, with a practical approach to the problem
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Is AI the future of turbomachinery and fans?
A WELL-FOUNDED CONCERN 

“All models are wrong, but some are useful” – G. Box, 1976
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