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SUMMARY 

Vibration signals related to fan aerodynamic performance are generally transient, non-stationary 

and non-linear. To extract aerodynamic-related features from these complicated signals, this 

paper presents an improved cyclostationary approach and employs an enhanced envelop 

spectrum to detect the modulating, harmonic and coupled frequencies, as well as to reconstruct 

principle modulating intensities. These modulation-related components have strong links with 

the flow-induced excitation, and can provide an alternative way to reveal the fan aerodynamics. 

Finally proposed approach is validated by typical simulation and axial-flow fan experiments.  

INTRODUCTION 

Since decades, the direct relation between the flow-induced excitation source and fan vibration-

noise has been a hot topic, but not yet elaborated clearly. It is considered that the flow-induced 

effect not only reinforces the characteristic components at the shaft frequency (SF) and blade 

passing frequency (BPF), but also excites the non-linear components at harmonic (HF) and coupled 

frequencies (CF). Therefore, such flow-induced effect could be regarded as main excitation source 

that aggravates the fan vibration and noise. However, it is not easy for conventional signal 

processing methods such as power-spectrum based and time-frequency based analysis to detect 

characteristic components and reconstruct spectral intensities. This is because vibration and acoustic 

signals involve in hidden modulation mechanism. In fact, due to the quasi-periodic and rapid 

rotations of fan shaft and blades, the flow-induced effect inherently generates a transient and 

broadband carrier signal, meanwhile, this irregularly changing carrier is modulated mainly by the 

SF and BPF components. In other words, the flow-induced effect can not only reinforces the 

modulation-related components, but also excites by-product harmonic and coupled frequencies. 

Indeed, the vibration and acoustic signal in fan operation turns out to be modulated, non-stationary 

and non-linear. In order to reveal the flow-induced effects and aerodynamic performance, it is 

highly necessary to demodulate such a complicated signal and extract its modulation-related 

components.  
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These days, the cyclostationary analysis has been a powerful tool for the vibration based condition 

monitoring. Cyclostationarity has been systematically developed by Gardner et al. and widely used 

in communication system and mechanical signal analysis [3-4]. Since then, many researchers [5-10] 

have developed advanced cyclostationary analysis in condition monitoring and fault detection of 

rotating machines. It has been successfully applied in fault diagnosis of rolling shaft, roller bearing 

and gear box [1-2]. In particular, Antoni et al. [11-14] established the cyclostationarity model and 

proposed a general methodology for analyzing complicated cyclostationary signals, especially 

introducing the cyclical spectral coherence to successfully detect the character frequencies in the 

vibration signals of the shafts and blades, gear boxes, as well as propellers and pumps. Botero et al. 

[15] adopted the cyclostationarity to detect the rotating stall instability and the number of stall cells 

in turbines. Napolitano [16] reviewed the application, new trends and limitations of 

cyclostationarity, which provided a comprehensive understanding of cyclostationarity to better 

serve the turbine design and fault diagnosis. The advantages of cyclostationary analysis are that it 

can comprehensively reveal the weak and hidden periodic features from the complicated waveforms 

of turbine signals, and can also extract the modulation-related components which are excited by a 

quasi-periodic excitation sources. However, most of the classical methods take the vibrational 

signal as a wide-sense stationary process or distinctly periodic one, thus they are incompetent to 

deal with signal cyclostationarity, and they neglect the hidden-period statistical moments.  

To the best of authors’ knowledge, few articles have revealed the quantitative relationship between 

flow-induced excitation and modulation-related components related to fan aerodynamic 

performance. This paper aims to improve the cyclostationary method and employ enhance envelop 

spectrum to characterize transient, non-stationary and broadband signals. The rest of paper is 

organized as: Section I briefly introduces the cyclostationarity of rotational machine. A modulation 

model of vibrational signals is established in Section II. An enhanced envelop spectrum is 

employed to quantitatively analyze modulation model in Section III.  Through typical simulations 

and axial fan experiments in Section IV and V. Finally Section VI concludes this paper.  

. 

CYCLOSTATIONARY ANALYSIS METHODS 

The cyclostationarity is the second-order statistical moment and can indicate a periodically time-

varying autocorrelation function, defined as in Eq.(1). 
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where 0T  and τ denote the period and the time lag, respectively ( 0T  ). The cyclic autocorrelation 

function is defined as the extracted coefficients by expanding the autocorrelation function into a 

Fourier series, as shown in Eq. (2).  
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where α is known as the cyclic frequency of the signal and its inverse as the cycle; j is the 

imaginary unit. The spectral correlation density (SCD) function is obtained by performing a Fourier 

transform of the cyclic autocorrelation function: 
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For better understanding of its physical meanings, another definition developed by Antoni [7] is 

briefly introduced as follows. It should be claimed that these two definitions are essentially 
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identical. Firstly, Eq. (4) is introduced as a pure second-order cyclostationary signal with a random 

stationary carrier v(t):  

0x( ) cos(2 ) ( )t t t  
                                                  (4) 

To detect its hidden periodicity 0 01/T  , a spectral correlation that measures the interaction 

between two spectral components at frequencies 𝑓1 and 𝑓2 is introduced as  
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where x
Df

t; f( )  is the filtered version of signal x(t) through a frequency band of width ∆f centered 

at frequency f, and the order of two limits cannot be interchanged. By changing the variables

 1 2     / 2f f f  , α = 𝑓1 − 𝑓2, Eq. (5) turns to the second definition of the SCD as: 
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(6) 

Eq. (6) is more intuitive and it represents a density of correlation of two spectral components spaced 

apart by α. However, some small vibration signatures will be masked in the spectral correlation 

density due to the spectral scaling effect. And more often, the degree of the cyclostationarity, which 

is a relative measure for the spectral correlation, is more concerned in detecting the vibration 

signature. Hence, the cyclical spectral coherence is defined as follows [13,14]: 
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where 𝑃𝑥(𝑓) is the power spectral density and 0 ( ) ( )x xSC f P f . Thus enhanced envelop spectrum is:  
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It is noted that  γ𝑥(𝛼) in Eq.(8) can transform an image of power spectral density into a concise 

curve of enhanced envelop spectrum. Considering the impulsive response of sensor measurements

( ) ( ) ( )y t h t x t  , the spectral correlation density and spectral coherence can be extended as: 
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where ( )h t  represents the impulse response, and transfer function ( )H f  is the spectrum of ( )h t . 

SIGNAL MODEL OF FAN VIBRATION  

The vibration model for fan operation can be derived according to rolling-element bearings with 

inner-race faults, which is widely used to provide an intuitive understanding to bearing fault signals 

[3,7,10,12]. A simplified version without the random slips is provided as following: 
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where h(t) denotes the impulse response of sensor to a single impact, and T is the inter-arrival time 

between two consecutive impacts. q(t) = q(t+P) is the periodic modulation with period P due to the 

load distribution, given that the inner-race defect will move in and out of the bearing load zone. The 

vibration will be strongest when the defect is in the load zone, and weakest when it is out of the 

load zone. Therefore, the period P is related to the shaft rotating frequency for a simple rolling-

element bearing. n(t) accounts for an additive background noise including other vibration sources. 

When fan is running, the steady and unsteady fluid forces on the fan blades are imposed on the 

bearing. The steady fluid force could impart much larger load than the original steady load, and the 

unsteady fluid force can generate oscillatory bearing load at BPF. Hence, even without any incipient 

fault in the bearing, the vibration signals can still be modulated by the steady and unsteady load as: 

( ) ( ) { ( )[1+ ( )]} ( )fy t h t v t q t n t    (11) 

where v(t) is the carrier from random vibrations, and ( )fq t  denotes the amplitude modulation due 

to the unsteady bearing load. For simplicity, impulse response ( )h t is omitted temporally. But it can 

be considered with Eq. (9). 

ENHANCED ENVELOP SPECTRUM FOR DEMODULATION 

Based on vibration signal model in Eq. (11), an amplitude modulation (AM) signal with infinite 

modulation components is embodied as: 
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where iA  is the amplitude of the modulating signal and i is the modulating frequencies with

1 0i i    . Then the AM signal is filtered by a narrow frequency band [f-∆f/2, f+∆f/2] as: 
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Then inserting Eq. (12-14) into Eq. (5): 
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Where 1 2( , ) ( )v vcorr f f P f=  is the power spectral density of carrier v(t). As v(t) being random 

vibration, any spectral correlation in v(t) turns to be zero when two involved frequencies are not 
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identical. By changing the variables 1 2 f fa = - , and ( )1 2 / 2f f f= + , Eq. (15) are categorized into 

four components as shown in Eq.(16):  
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The corresponding spectral coherence ( )x f  are shown in the Eq. (17):  
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It is worth noting that the spectral coherence ( )x f  is better to use than spectral correlation density

( )xSC f , since ( )x f  can reveal the degree of modulation intensity and avoid the influence of 

random carrier vibrations.  
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SIMULATIONS ON CYCLOSTATIONARITY RECONSTRUCTION  

Before cyclostationarity analysis, two synthetic signals are adopted to verify the derived spectral 

coherence ( )x f  in Eq.(17). For simplicity, synthetic signals contain only two modulation 

components as: 

1 2x( ) [1 cos(2 )+cos(2 )] ( )t t t t     . (18) 

For the first synthetic signal, the modulating frequencies are set as 1 = 7 Hz, 2 = 14 Hz, where one 

is another’s harmonic. This case exists widely in rotating machinery vibrations. For the second, the 

modulating frequencies are set as 1 = 10 Hz, 2 = 14 Hz, where two modulating components are 

independent and irrelevant modulating components. Here a white Gaussian noise is used for random 

carrier signal v(t). The sampling frequency is set to 1000 Hz.  

 

(a) 

 

(b) 

Figure 1: (a) spectral coherence  (b) enhanced envelop spectrum γ𝑥(𝛼) with 1 = 7, 2 = 14 Hz ( )x f



FAN 2018   7 
Darmstadt (Germany), 18 – 20 April 2018 

 

 

(a) 

 

(b) 

Figure 2: (a) spectral coherence  (b) enhanced spectral coherence γ𝑥(𝛼) with 1 = 10, 2 = 14 Hz 

In fact, the signal x(t) in Eq.(18) is a non-stationary signal, since its probability density function 

(PDF) is time-depending and its statistical moments are time-varying. Therefore, this non-

stationarity constrains the use of the state-of-the-art methods like STFT, WT and EMD etc. Owing 

to the periodical working mode of rotating machine, the PDF of x(t) varies periodically with time, 

since x(t) inherently has the periodic characteristics due to the modulation components. Compared 

with the conventional methods, cyclostationary analysis can extract the modulation components. 

For the first case, harmonic and coupled frequencies will mix up. Therefore, only four cyclic 

frequencies with non-zero values exist in the image of power spectral coherence. As displayed in 

Fig. 1(a), the spectral lines can be distinguished in the gray-level images. For the second, the 

harmonics and coupled components will not mix up, thus six spectral lines are detected clearly in 

Fig. 2(a). In addition, Fig. 1(b) and Fig. 2(b) display the enhanced envelop spectrum  γ𝑥(𝛼) in 

Eq.(8) alone frequency axis. Moreover, Table 1 demonstrates the performances of detecting 

( )x f
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modulated frequencies and reconstructing modulated intensities for other cases of amplitude 

modulations.  

Table 1: Detection of modulated frequency and reconstruction of modulated intensity 

  

 

FAN DATA TESTS ON CYCLOSTATIONARITY DETECTION 

(a)  (b)  

Figure 3: An axial-flow fan in experiments (a) and three sets of accelerometers (b). 

 

Table 2. Parameters of tested axial fan. 

 Cyclic frequency i (Hz) Intensity Ai (Unit) 

Simulation 30 50 65 1 1 1 1 

Estimation 30 50 65 1．00 1.00 1.00 1.14 

Error (%) 0 0 0 0 0 0 14.29% 

Simulation 30 50 65 1 1 2 3 

Estimation 30 50 65 1．00 1.27 2.25 2.75 

Error (%) 0 0 0 0 26.92% 12.5% 12.5% 

Simulation 30 40 60 1 1 1 1 

Estimation 30 40 60 1．00 1.02 0.94 0.87 

Error (%) 0 0 0 0 2.56% 5.84% 12.82% 
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The vibration signals are collected from an axial-flow fan as shown in Fig.3(a), which serves the 

ventilation in metro system. The rated parameters of this fan are of 75 km3/h output, 37 kW, shaft 

rotating frequency 1450 rpm (24.17 Hz), and BPF 193.33 Hz (8 blades). Three accelerometers are 

used as ECON SN J1165, ECON SN 05127 and PCB SN LW 186548 in Fig.3(b).  

  

  

(a) 

(c) (d) 

(b) 
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Figure 4: Foundation loosening:  

(a)(c)(e) fft-based spectrum,        (b)(d)(f) enhanced envelop spectrum x  

When the axial-flow fan is running at 10 Hz, the vibrational signals are sampled simultaneously by 

three accelerometers according to experimental setup in Fig3. The power spectrum of signals at one 

sensor is shown in Fig. 4(a). It is easy to see a peak at 10 Hz, and this result indicates few of 

harmonic and coupled components. Unfortunately, conventional PSD method fails to detect the 

BPF at 80 Hz. On the contrary, in Fig. 4(b), the enhanced envelop spectrum γ𝑥(𝛼) cannot only 

show the 10 Hz peak, but also reveal its multiple harmonics, especially the BFP at 80 Hz as a local 

peak. In the case of loosening one of the four bolts at fan foundation in Fig.4(c), the PSD changes as 

the peak at 50 Hz disappears. As for the enhanced envelop spectrum γ𝑥(𝛼) in Fig.4(d), it can still 

obtain the most of key features of rotating frequencies. Moreover, the correlation coefficient 

between Fig.4(b) and Fig.4(d) is nearly 0.82, which can indicate some defect such as the foundation 

loosening. When the four bolts are totally relaxed in Fig.4(e-f), the PSD severely deteriorates and 

only gives the 10 Hz peak and some of harmonics, but the average spectral coherence can be able to 

tell the shaft rotation at 10 Hz, complete harmonics (2X in particular), as well as the BPF at 80 Hz. 

Moreover, the correlation coefficient between Fig.4(b) and Fig.4(f) is below nearly 0.67, which can 

be used as the fault diagnosis for severe bolts loosening. 

CONCLUSION AND PERSPECTIVE 

To extract the key features of vibration signals related to fan aerodynamics, this paper improves the 

cyclostationarity method by employing an enhanced envelop spectrum to deal with the transient, 

non-stationary and broadband signals. Through typical simulations and axial fan experiments, the 

enhanced envelop spectrum can provide a quantitative way to recognize the feature frequency 

components (SF, BPF, HF, CF etc.) of axial-flow fan during the normal and abnormal conditions. 

However, in order to suppress the mechanical interference and background impulse noise, it is 

promising to combine Kurtosis spectrum [22] and cyclostationarity. Comparing to vibrational 

signals, acoustic sources will be more convenient to analyze the fan aerodynamic and aeroacoutic 

performance.  Therefore, it is more interesting but challenging to localize the acoustic sources by 

adequate array of microphone sensors in remote and non-contact measurements [18]. 
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